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We construct a supersymmetric gauge model describing the electromagnetic 
interaction of anyons. This is done by means of the supersymmetric generalization 
of the U(l) X U(I) gauge theory. The model contains the statistical U(1) gauge 
field endowed with a Chem-Simons mass term and the electromagnetic field, both 
with the corresponding superpartners, coupled to matter fields. This constrained 
system is analyzed from the Hamiltonian point of view and the canonical 
quantization is found. The path-integral method is used to develop the perturbative 
formalism. We define suitable propagators and vertices and give the diagrammatics 
and the Feynman rules. 

1. I N T R O D U C T I O N  

Recently, by starting from the general classical U(I) x U(1) nonrelativis- 
tic gauge theory which describes the electromagnetic interaction of anyons 
(Cortes et aL, 1994), we have studied the model from the quantum point of  
view (Foussats et aL, 1995b). Using the path-integral method, we found the 
Feynman rules and  the diagrammatics of this model. 

As is well known, in 2 + l dimensions, when time reversal and parity 
invariance are violated, it is possible to have anyons. Anyons are important 
not only from the theoretical point of  view, but also phenomenologically. 
There are several models and different theoretical approaches for describing 
anyonic excitations (Berezin and Marinov, 1977; Goldin et al., 1980, 1981; 
Wilczek, 1982; Wilczek and Zee, 1983; Laughlin, 1983; Chern et al., 1991; 
Wu and Zee, 1984; Bowick et al., 1986; Dzyaloshinskii et al., 1988; Polyakov, 
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1988; Plyushchay, 1992; see Wilczek, 1991, for review). The most fruitful 
model is constructed by coupling minimally a bosonic or fermionic system 
to a U(1) statistical gauge field. In this type of model, the dynamics is 
governed by the Chern-Simons (CS) action (Hagen, 1984, 1985a,b; Arovas 
et aL, 1985; see Jackiw, 1990, for review). 

Approaches are also available including the electromagnetic interaction 
of anyons (Kogan, 1991; Kogan and Semenoff, 1982; Stem, 1991; Cabo et 
al., 1992; Cortes et al., 1992; Chou et al., 1993; Chaichian et al., 1993). The 
electromagnetic interactions of anyons in the framework of quantum field 
theory can be formulated as a U(1) x U(1) gauge theory coupled to a matter 
(bosonic or fermionic) field through a conserved current (Cortes et aL, 1994). 

For the case of nonrelativistic field theory, Cortes et al. (1994) showed 
how it is possible to obtain the value Ixst = 1/(2m) of the statistical magnetic 
moment required when the one-particle sector is considered. Of course, the 
U(1) x U(1) gauge model also reproduces the value IXem = (e /m)s  for the 
electromagnetic magnetic moment. So, to reproduce the results from quantum 
mechanical formulations, a simple and elegant way is to couple an anticom- 
muting (or commuting) matter field to two U(I) gauge fields. One of these 
is the electromagnetic field and the other the statistical field introduced 
through the CS action. 

When an anyon system coupled to an electromagnetic field is considered 
in the framework of the relativistic quantum field theory formalism, additional 
problems associated with the nonlocalized character of the statistical current 
appear. These questions have been discussed by Cortes et al. (1994) (see 
also Frrlich and Marchetti, 1988). 

On the other hand, Hlousek and Spector (1990) give an interesting 
supersymmetric formulation of pure anyon theories. Starting from the standard 
formalism of pure anyon theories in terms of the U(I) statistical CS field, 
the minimal supersymmetric model with fractional spin and statistics is con- 
structed. Of course, the first result is that supersymmetry connects fields of 
spin S with fields of spin S + 1/2. When the particle content and the interac- 
tions of the model are explored, an anyon-anyon interaction required by 
supersymmetry naturally appears. So, the main conclusion is that in this type 
of model the interaction among anyons is a direct requirement of supersymme- 
try. More precisely, in a supersymmetric theory, anyon species must interact 
in order to preserve supersymmetry. This fact can be seen from a general 
point of view by defining a minimal coupling among a suitable conserved 
current superfield and a gauge spinor superfield. 

Hlousek and Spector (1990) also carried out a complete study for the 
case of topological solitons having fractional spin and statistics. This is done 
by constructing the supersymmetric generalization of the Hopf term for 
the supersymmetric 0(3) nonlinear sigma model. The results reflect the 
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importance of considering supersymmetry when fractional spin and statistics 
are present. 

Following this line, in the present paper we will focus on formulating 
the classical and quantum supersymmetric generalized version of the U(1) 
× U(1) gauge theory coupled to matter fields previously developed in Cortes 
et aL (1994) and Foussats et aI. (1995b). In the constructive procedure of 
this supersymmetric model we will apply the techniques used in classical 
and quantum CS theories in 2 + 1 dimensions coupled to different kinds of 
matter fields (Deser et al., 1982a,b, 1988; Dunne et aL, 1989; Jackiw and 
Templeton, 1981; Matsuyama, 1990a,b; Lin and Ni, 1990; Avdeev et al., 
1992; Odintsov, 1992). 

The paper is organized as follows. In Section 2, the definitions and 
quantities we need to construct the classical supersymmetric action in a 
superspace are introduced. In Section 3, we analyze the constraint structure 
of the model and we find the extended Hamiltonian of the coupled constrained 
supersymmetric system. Next, by following the Dirac algorithm, we carry 
out the canonical quantization in a straightforward way. In Section 4, we 
construct the perturbative formalism by using the path-integral method. 

2. P R E L I M I N A R I E S  A N D  C L A S S I C A L  S U P E R S Y M M E T R I C  
ACTION 

In pure anyonic models (see, for instance, Hagen, 1984, 1985a,b; Arovas 
et aL, t985; Jackiw, 1990) one can consider a charged spin-l/2 Dirac field 

or a complex spin-0 field tp coupled in the standard way to a U(1) statistical 
gauge field A~. The gauge field A~ must be included as a CS mass term, i.e., 

~ f  = -~(i3,~D~ - m)t~ + ~ e~'VPA~OuAp (2.1) 

or 

1 
~ b  = D~.tP*D~P - m2~p*q ~ + ~ e~PA~O~Ap (2.2) 

where the gauge-covariant derivative is D~ = a~ - igA~, and o- is the statistical 
parameter. The convention used in ~0~2 = et2 = 1, and the Minkowski metric 
g ~  is g ~  = diag(l, - 1 ,  -1) .  The Dirac ",/-matrices are 3, 0 = cr 3, 3,~ = io "1, 
and 3,2 = icr 2 (the cr's are the Pauli matrices). 

As is well known, the Lagrangian (2.1) describes the theory of particles 
with spin S = (e2/4ar)o " + 1/2 obeying the fractional statistics (e2/2'n)cr + 1, 
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and the Lagrangian (2.2) describes the theory of particles with spin S = (e2/ 
4-rr)cr obeying the fractional statistics (e2/2"rr)cr, in both cases for arbitrary 
values of or, while for cr = _+2"rr the Bose-Fermi transmutation occurs and 
the value of the spin is well defined. 

We remark that in equations (2.1) and (2.2) a Maxwell term 
- ¼ F ~ ( A ) F ~ ( A )  may or may not be present. The CS term breaks both parity 
and time-reversal invariance and makes it possible to turn these into anyonic 
Lagrangians. That is, (2.1) and (2.2) describe field theories and particles with 
fractional statistics, due to the presence of the CS term. 

On the other hand, an anyon system interacting with the electromagnetic 
field can be considered (Cortes et al., 1994). From a general point of view 
and taking into account only general requirements of gauge invariance, it is 
possible to construct a U(I) × U(I) gauge theory. In this type of model a 
matter field couples through a conserved current and the anyon dynamics 
interacting with the electromagnetic field involves two U(I) gauge fields. 
Having in mind this model, in Foussats et al. (1995b) we carried out the 
quantization and also developed the perturbation theory. 

Now, our purpose is to construct the supersymmetric generalization of 
the U(1) x U(I) gauge theory. To do this, we first introduce some definitions 
in the superspace of coordinates (x ~, 0), where 0 is a two-component Majorana 
spinor (see, for instance, Grisaru, 1982; Gates et al., 1983). 

Looking at the Lagrangian density of the U(I) x U(I) gauge theory 
(Cortes et aL, 1994; Foussats et aL, 1995b), it can be seen that to maintain 
supersymmetry, the supersymmetric completion procedure must be applied. 
The supersymmetrization of the matter fields is easily obtained by simply 
adding the free-field Lagrangians (2.1) and (2.2). Next, we must find the 
supersymmetric partner of the CS term. Besides this, we must consider the 
supersymmetric generalization of the following electromagnetic Lagrangian 
[see equation (2.9) of Foussats et al. (1995b)]: 

1 1 e 
= - -  Fo.,,(A)F~"(B) (2.3) 2E~,, 4 F ~ ( B ) F ~ ( B )  8"rr m 

where B~ is the electromagnetic field. 
Consequently, to describe the supersymmetry involving the matter fields, 

we will use complex scalar superfields ~(x ¢, 0) and ~*(x ~, 0). A complex 
scalar superfield has components 

dp(x~, O) = tp(x ~) + O~t~(x ~) - OZF(x ~) (2.4) 

where cp(x ~) is a complex scalar field, ~,~(x ~) is a Majorana spinor field, and 
F(x ~) is also an auxiliary scalar field. 

To describe the supersymmetry involving the two gauge fields U(I ), we 
will use spinor superfields. In the spinor superfields the gauge connections 
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A~ or B~ and their corresponding superpartners are embedded. In the general 
definition of spinor superfields, a couple (scalar boson-fermion) of purely 
gauge objects can be included. The simplest case is called Wess-Zumino 
gauge, in which the purely gauge objects are taken equal to zero. For simplic- 
ity, we will work in the Wess-Zumino gauge and therefore write a spinor 
superfield V,~(x ~, 0) in components: 

V . ( x  ~, O) = - i (~O) ,~A~ - 20zh,~ (2.5) 

where only the gauge field A N and its superpartner h .  are included. Of course, 
another spinor superfield for the gauge connection B.  and the corresponding 
superpartner ×,~ must be also defined. 

Therefore, to generalize the U(1) X U(I) gauge theory in the Wess- 
Zumino gauge, a gauge-invariant superpartner h (gaugino) for the gauge 
boson A N, and another gauge-invariant superpartner X (photino) for the gauge 
field B~,, are necessary. 

As usual, the supercovariant derivative D,~ (SCD) in the superspace is 
defined by D,~ = 0/00 '~ + i('yv'O)¢,O w A gauge transformation in superspace 
is given by V~ ~ V,~ + D,~A and ~ ---r exp(ieA) qb, where A(x ¢, 0) is any 
real-valued function of superspace. 

The definition of the gauge-covariant supercovariant derivative (GCSD) 
used in pure supersymmetric anyon theories is given by the equation V,~ = 
De, - ieVc,(A, h)  where V,~(A, h )  plays the role of superconnection (Hlousek 
and Spector, 1990). When the electromagnetic interaction is present, we 
define the U(I) x U(I) GCSD containing a double superconnection 
as follows: 

Vc, = D,:, - ie[V,~(A, h )  + V,~(B, X)] (2.6) 

Another necessary object in the supersymmetric generalization is the 
field strength spinor superfield given by 

W,~ = ½Df~D,~V~ (2.7) 

The field strength superfield (2.7) makes possible the supersymmetric 
generalization of two kinds of terms: the CS term by coupling the gauge 
connection superfield to the field strength spinor superfield, as well as the 
two terms in equation (2.3) by coupling the superfield strength with the 
superfield strength. 

As shown in Hlousek and Spector (1990) for pure anyon theories, the 
minimal supersymmetric Lagrangian obtained by direct generalization of the 
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nonsupersymmetric case is obtained from the action: 

1; f ~maninimal = ~ d3x d20(~c~(I)*)(Vc~(] )) - d3x d20 m ~ * ~  

1 f d3 x d2 0 ~C~(A, ~,)W,(A, h) 
+4-g 

I ( d3 x d20 ~a(A ' X)Wa(A ' ~.) (2.8) 
4 J 

where the massive term was added for convenience; but setting m = 0 is 
possible and the conclusions are unchanged. 

Writing the minimal action (2.8) in components in the Wess-Zumino 
gauge, and integrating out the Grassmann variables 0, we obtain the minimal 
Lagrangian density in the form 

1 i 
~inimal = --~ F~.~.(A)FV'V(A) + -~ k~t~O~ h + D~q~*D~q ~ - m2cP*q ~ 

+ i-~('y~O~ - m)d~ + ie(-~hq~ - htbq~*) 

l ~ h  + l 
2cr ~ e~VPA~O~An (2.9) 

It is easy to see that the introduction of the electromagnetic interaction 
naturally yields the following minimal action: 

'f f ~gminima I = ~ d3x d20 (VatI3*)(Vat~) - d3x d20 mCb*d~ 

1 I d3x d20 Va(A' k)W~,(A, h) 
+ 4---~ 

1 f d3 xd20Wa(B ' x ) W,,( B, X) 4 J 

1 e f d3 x d20 [W'~(B, x)Wa(A, h) + WC~(A, X)W,~(B, ×)] 
16at m ) 

(2.10) 

The use of the superfields ~, V,, and W,~ and the GCSD V,~, all defined 
in the superspace, guarantees the supersymmetry of the action (2.10). The 
gauge invariance U(1) X U(1) of the model is ensured by construction. 

Once the integration on 0 coordinates is performed in equation (2.10), 
the total Lagrangian density is given by 
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~ota~ = ~a~ + ~em (2.11) 

The Lagrangian density in components in the Wess-Zumino gauge reads 

~an = D~p*D~*~ - m2~*~ + i-~(Y~'Dt, - m)~ 

+ ie(-~a~p - X~,~p*) + ie(~×cp - 2~P*)  

+ ~PA~O~A~ - ~ Xk (2.12) 

1 e 

i ie 

where now D~ = 0~ - i e A v .  - ieB w 
The Lagrangian (2. I I ) describes the interacting theory of a field ~p of 

spin S = (eZl4w)cr and a field ~ of spin S = (e214w)cr + 112 (and their 
conjugates), both interacting at the same time with the electromagnetic field. 

The particular form of the couplings among the matter fields ~0 and 
is also a property of the supersymmetric anyon Lagrangian (2.12). Moreover, 
when e --) 0 the interaction terms go away while supersymmetry remains. 
When the supersymmetry is also eliminated the model is reduced to a pure 
(fermionic or bosonic) anyon system maintaining fractional spin and statistics 
(see, for instance, Polyakov, 1988; Kogan, 1991; Kogan and Semenoff, 1992). 
From (2.12) it can be seen how the supersymmetry naturally produces an 
anyon-anyon interaction through the coupling to the two photino k and × 
superpartners, respectively, of the two U(I) gauge fields A~ and B~. The 
photino mass term (I/2cr)Xk superpartner for the CS term is also present, 
serving as a gauge-invariant mass term for the gauge field A w Therefore, all 
these facts are direct consequences of the supersymmetric requirements of 
the model. 

Moreover, we notice that when the electromagnetic interaction is present, 
the statistical gauge field A~ as well as the two photinos turn into dynamical 
fields. So, none of the photinos can be integrated out as occurs in pure anyon 
theories with k when the model has only the CS term for A~ (Hlousek and 
Spector, 1990). 

Finally, we briefly comment that the presence of the term (el 
8"nm)F~.~(A)F~(B) in (2.13) in the nonsupersymmetric case is derived from 
general arguments of U(I) × U(I) gauge invariance. More precisely, when 
the dynamics of anyons interacting with the electromagnetic field is written 
in terms of conserved current, an additional contribution J~(B) to the statistical 
current is needed. The requirement to obtain the correct value for the electro- 
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magnetic moment uniquely determines the piece of current Jr(B) depending 
on the electromagnetic field B~, and therefore the coupling of both U(I) 
gauge fields remains univocally determined by 

e 
J~'(B)A~ = 8'rrm Fv'"(A)FV'"(B) (2.14) 

The same procedure in terms of conserved current can be carried out 
in the supersymmetric case. A spinor superfield conserved current ~ (D,~,~ '~ 
= 0) minimally coupled to the gauge spinor superfield V,, can be defined. 
So, writing the action ½f d3x d20 offaVo~ in components, in the Wess-Zumino 
gauge, besides (2.14) the following superpartner term is obtained: 

ie 
8'rrm (X~tv'O~h + -h'Yv'O~X) (2.15) 

We notice that these two terms are quadratic respectively in the gauge 
fields and in the photino fields, but both terms are linear in each one of the 
fields. As will be seen, these terms play an important role in the definition 
of propagators in the quantum formalism. 

In the next section we will analyze the constraint structure with the aim 
of finding the extended Hamiltonian of the model. 

3. CONSTRAINT STRUCTURE HAMILTONIAN AND GAUGE- 
FIXING CONDITIONS 

Now we briefly study this coupled system in the framework of the Dirac 
formalism for constrained Hamiltonian systems. It is interesting to analyze 
the constraint structure, the gauge-fixing conditions, and all the arguments 
needed to develop the perturbative method starting from the path-integral 
formalism. 

The phase space is constructed by starting from the total Lagrangian 
(2. I 1). The momenta canonically conjugate to the independent field variables 
are given by 

pO = 0 

• _ e FiO(B) + 1 ¢ijA j 
e'a - 47r----m G 

e o  = 0 

p~ = FiO(B) + e FiO(A) 
4arm 

P,p = OoCp - ie(Ao + Bo)tp 

(3.1 a) 

(3.1b) 

(3.1c) 

(3.1d) 

(3.1e) 
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P* = 0o~* + ie(Ao + Bo)¢* 

I-[~, = - i ~ / °  

1-I¢ = 0 

~ ,  = __ i___._~e 
8'rrm ~,,/o 

I - L = O  

i ( e )  

(3.1f) 

(3.1g) 

(3. lh) 

(3.1i) 

(3. l j) 

(3.1 k) 

(3.11) Hx=O 
where the Latin indices take the values i, j = 1, 2. 

The Poisson brackets between pairs of canonical conjugate variables 
are as usual (see, for instance, Sundermeyer, 1982) and so they are not 
written here. 

Looking at equations (3.1), we see that (3. I a) and (3. l c) are the primary 
bosonic constraints and (3. Ig)-(3.11) are the primary fermionic ones. From 
these constraints we are able to construct the total classical Hamiltonian Hr 
= f d 2x ~ r  generator of time evolution, where the Hamiltonian density ~ r  
is given by 

~T = ~can q- baP~a + bBP°n + )C,l-I~, + (l-I, + i~t°)f, + ]rxH~ 

+ ( ~ x  + i._..~e ) [ i (  e ) ] 
87rm~"/° fx +Ll-Ix + Hx + ~ X + ~ h  ,y0 f× 

(3.2) 

Here ba, b8 and f, f are, respectively, bosonic and fermionic Lagrange 
multipliers. 

As usual, the functional ~¢~, is defined by 

~can : A~P~ + B~P~ + (pP,p + (p'P* 

+ ~ r k  + + 9 ,  + ~ri~ + xrl~ + 2ri x + x~x  - ~e 

which, after using (3.1b) and (3.1d)-(3.1f), we can write as 

~can = (4'rrml(2"rrm Pia - Pis)pia + 1  (4~rml(4~m PJA -- PJB)Eij ai 
\ e ] \  e ~ \  e ] \  e 

2 

+ ~ AJ Aj + aiA°pia + OiB°P~ - eiiaiAiAO 
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+ e F~j(A)FiJ(B) 
8"fire 

1 
+ ~, F~J(B)F~j(B) + P*P,p + ie(a ° + B°)(tpP * - q~*p,p) 

- e ~ ( a  ° + B°)',t°O - i~(~iDi - m)O - (Diq~)*(Diq~) + m2q~*q~ 

i 

1 
ie (~3,i0ih + ~/i0ix) + ~ hh  - ie(-~hq~ - X~q~*) (3.3) 

8"rrm 

- ie('~xq~ - ~t~tp*) 

Analyzing the set of primary constraints from equation (3.1), it is possible 
to show that there are other two bosonic secondary constraints of second 
class. Therefore, besides the six second-class fermionic constraints, the model 
has initially four bosonic constraints, two of which are first class and two 
second class. By direct computation we can find linear combinations of 
constraints giving rise to two other first-class bosonic constraints. Thus, the 
final set of constraints is given as follows: 

(i) The four bosonic first-class constraints are 

2;1 = /~a ~ 0 (3.4a) 

2;z = /~B ~ 0 (3.4b) 

1 eOOiAj ) _ eOiP~ ~ 0 2;3 = e oipiA + (3.4c) 

24 = i oipi B + ¢.~,p,p _ ~p~  + ~i-i0 + F[011j ~ 0 (3.4d) 
e 

(ii) We call the six fermionic second-class constraints l-l~ (a = 1, 2, 
. . . .  6), and they are given in equations (3.1g)-(3.11). 

When the Dirac algorithm is continued and the consistency condition 
is imposed on the fermionic second-class constraints, the corresponding 
Lagrange multipliers f a n d f  in equation (3.2) remain univocally determined. 

Consequently, in the framework of the canonical quantization, the quan- 
tum Hamiltonian functional of the constrained system under consideration is 
written as 

H~ = I d2x (~'~can + aEi + b2;2 + C2;3 + d~4) (3.5) 
! 
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where a, b, c, and d are undetermined parameters, and the four associated 
first-class constraints correspond to all the gauge symmetries of the model. 

The procedure can be continued by constructing the Dirac brackets from 
the Poisson ones. To complete the canonical quantization the second-class 
constraints must be taken as equations strongly equal to zero. Finally, the 
Dirac brackets are replaced into the equal-time (anti) commutators according 
to the usual rule (Dirac, 1964). 

In the system under consideration, four first-class constraints Zi remain, 
so, in order to restrict the system on the true phase space, subsidiary conditions 
must be imposed. These conditions, or gauge-fixing conditions Fi ~ 0 (one 
for each first-class constraint), must be compatible with the equation of 
motion. In addition, they must satisfy the following requirements: for all the 
first-class constraints Zi ~- O, det[f, Zj]o --/: 0 and [fi, J~]PB = O. This means 
that the conditions Fi ~ 0 and Zi ~ 0 are all independent and really restrict 
the phase space. The above requirements do not determine uniquely the 
gauge-fixing conditions Fi, consequently, as an example, we can choose the 
following simplest expressions: 

Ft = Oi A i  ~ 0 

F 2 = Oi Bi  ~ 0 

( e )  
F3 = 7 2 Bo + ~ m  Ao + e~3Pd~ + ie(q~*P,p - 

(3.6a) 

(3.6b) 

P**) ~ 0 (3.6c) 

F4= VZB° + 4"rrm [ l  eiJOiAj + e-~'l°+ + ie(q~*P~- P*q~)} (3.6d) 

When the quantization procedure is implemented by using the path- 
integral method, the above gauge-fixing conditions will be used explicitly. 
They play an important role in determining the part of the gauge-fixed action 
b°~x in the total effective quantum action given by 5?q = fTd,~s + ~ o  In 
general 9°fix results quadratic in the gauge-fixing conditions Fi, i.e., 
b°nx = -~FiciJFj. 

4. QUANTIZATION AND PERTURBATIVE METHOD 

In this section, we construct a perturbative method by defining a proper 
diagrammatic, propagators and vertices, in the framework of the path-integral 
formalism. As the coupled system we are analyzing has first- and second- 
class constraints, the simplest way is to proceed according to the Faddeev- 
Senjanovic formalism (Faddeev, 1970; Senjanovic, 1976). So, we assume 
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that the partition function for the U(1) × U(1) supersymmetric gauge model 
can be written as follows: 

Z = f 1~ ~(BF) ~(BM) ~b(F-F) ~(FM) ~(FF) ~(FM) ~(Zi) 

× g(Fi) det[Nt, ~2, 23, Y,4, Ft, F2, F3, Fa]D ~(~'~a) ~(~Qa) det[l)~, lqh] 

× e x p  i[f d3x (A~P~ + B¢P$ + cpP, + cp*P* + * l l , +  t~H, 

+ hIIx + ~,~x + Xllx + )(H×) - Hr] (4.1) 

where the Hamiltonian density Hr was already defined in (3.2). We have 
written (BF) = boson fields, (BM) = boson momenta, (FF) = fermion fields, 
and (FM) = fermion momenta. 

In equation (4.1), the matrix whose elements are [Ei, fj]o is written 
as follows: 

[Xl, Xz, X3, 24, Ft, Fz, F3, F4]D = 

/ o  o 0 

0 0 - e-L- V 2 
4-rrm 

eV 2 - e V  2 0 

0 - i  v 2 o 
e 

The determinant of the matrix (4.2) is 

e V21 
4'rrm 

-V2 

0 

o / 

8(x - y )  (4.2) 

2 

det[Xl, ~2~ ~3, ~4, f l ,  J~, f3, f4]D = i(4--~m ) (~2)4~(X -- Y) (4.3) 

as it does not depend on the field variables, so it is included in the path- 
integral normalization factor. 

Just the same occurs with the other determinant appearing in (4.1), 
constructed from the second-class constraints. 

Using in equation (4.1) the delta functions ~(El), ~(E2), ~(~a), and 
g(f~,3, we immediately perform the path integral over the fields pO, po, (FM) 
and (FM). Consequently, after the integration is carried out, the Hamiltonian 
Hr appearing in the exponential of the action of equation (3.1) becomes Hca,. 
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On the other hand, the two gauge-fixing conditions (3.6c) and (3.6d) 
can formally be solved for Ao and B0, namely 

_ m  ( dZy [(1/o)EiJOiAj + e'~'y°h9 + ie(~p*P~p - P*qo)] 
Bo(x) ~ P2 = e J ix - yt 

(4.4a) 

- p*~p)] 

equation (3.1) can be partitioned as follows: 

= H 0 + ~ ,  e2 P2 - eP~ ~ 1 -  i pl - - -  ) P2 + ep2 ~2 (4.5) 
e 

Now, the integral representation 8(E~) = f ~bA,, exp(i f d3x A,,E~) (a 
1, 2) can be introduced. Therefore, taking into account the arbitrariness 

of the multipliers A,~ and following the usual steps, it is possible to rescale 
the corresponding integration variables in such a way as to recover the original 
//can (Sundermeyer, 1982). 

Performing the Gaussian integrals over the remaining momentum vari- 
ables, we find the final form of the partition function (4.1): 

Z = ( ~A~ ~B~ ~q0 ~q0* ~ ~t~ ~bh ~ k  ~ 2  ~X 

where ~ f f  is the original Lagrangian written in (2.11). 
Finally, using the Faddeev-Popov trick to go over a general covariant 

gauge O~A ~ = ca(x) and O~B ~ = cs(x), we find the final form of the partition 
function (4.6): 

Z = f ~bA~ ~B~ ~btp ~q~* ~-~ ~dd~3h ~bh ~ x  exp i [ f  d3x ~ *] 

(4.7) 

m [" [~,°t~ + i(q~*P,p Ao(x) ~ _4"rrm Bo + pj = - - -  Bo - m d2y 
e e J Ix - yl 

(4.4b) 

In equation (4.1) the delta functions can be written g(F3) = g(Ao + 
(4"rrm/e)Bo - Pl) and g(F4) = g(B0 - P2) and so the path integral on A0 and 
B0 also can be performed. 

Consequently, the Hamiltonian Hc~ remaining in the exponential of 



1692 Foussats et al. 

The functional ~*  is given by 

where 

(4.8) 

We have denoted 

+ S~.,(xA, E, ~*, ~, ~, +) 

S*(E) = ( d3x [~K-I~-] 

(4.1 O) 

(4.1 la) 

(4.1 lb) 

~nx = -~ (0 A~)- + -~ (3~B~) - (4.9) 

Looking at equation (4.7), we can see that a fruitful form for the partition 
function was obtained. The quantum problem was written in terms of a path 
integral over all the independent dynamical fields. Subsequently, the problem 
can be treated using the diagrammatic technique in the framework of Feynman 
path-integral perturbation theory. In principle it is straightforward to go from 
the path integral (4.7) to the Feynman rules, propagators, and vertices ('t 
Hooft and Velman, 1973). 

In this supersymmetric gauge model, the key to the interaction between 
both U(1) gauge fields, or their corresponding superpartners, is respectively 
given by the term (2.14) or (2.15) appearing in the Lagrangian (2.13). As 
noted above, these interacting kinetic quadratic terms must contribute to 
propagators. Such terms, being quadratic in the fields but linear in each of 
them, takes part of the corresponding propagators in an unusual way. 

So, due to the presence of these terms in the functional ~*,  the only 
possibility is to construct from the two gauge fields a unique bosonic mixed 
propagator associated with an extended bosonic quantity. Analogously, a 
mixed fermionic propagator also can be defined. 

We define the auxiliary quantity XA = (A¢, B.), where the compound 
index A - (Ix, v) takes six values. Correspondingly, we introduce the auxiliary 
fermionic quantity ~ -- (h, X)- 

Then, after we write the action in terms of these quantities, we recognize 
the quadratic part of the Lagrangian ~*  as representing the propagators 
and the remaining pieces as representing the vertices. Consequently, the 
Lagrangian density (4.8) defines the effective action of an anyon system 
coupled to the electromagnetic field and it can be partitioned as follows: 

S* = S*(XA) + S*( -  =) + S*(~, 0) + S*(,p*, ,p) 
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( 
S*(-~, ~l~) = I d3x [~G-'~] (4.11c) 

= f d3x [q~*P-Iq0] (4.1 ld) S*(~o*, q~) 

S~nt(XA, ~ ,  qo*, qo, ~, tl/) = I d3x [e2tp*(Xv-VV-AXA)tP] 

+ f d3x i e [ - ~ l = _ q ~  - _~l+q~*] 

+ I d3x [e~F~X~] 

+ ( d3x [2ieq~*X.;O~tp] (4.1 le) 

In equation (4.11 a) the 6 × 6 matrix (D- J) is the inverse of the propagator 
associated to the auxiliary field Xa, and it is Hermitian and nondegenerate. 
So the propagator Da~(k) in the momentum space can be evaluated as 

(M~,,L~,,) (4.12) DA~_(k) = L~  N~ 

The quantities M~., N~., and L~, are given by 

(4~_m)l k~k~[(4"rrm) ~" 1 ] 
Mw, = a(k2)g~v k 2 "-7--- offk 2) + ~ (at(k2) - f3(k2)) 

k~k~k 2 + i--1 {4"rrm~2e k p] 

+ i ~l(kZ)e~p 

N~.  = t3(k%g~, k2 13(~: 2) + (c~(~:% - 13(~:2)) 

+ iy(k2)%.~p k-5 

L~ - 4,rrm offk2 )[g~,,, _ _ _  
e L 

and the functions effk2), [3(kZ), and "y(k 2) are [ , (v)4] 
a(k  2) = k 2 - _  

? 

",/(k'-) o" 

1 
13(k 2) cr2k---- 5 

(4.13a) 

(4.13b) 

(4.13c) 

(4.14) 
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As expected (Foussats et al., 1995b), the form of the bosonic propagator 
(4.12) is the same as we previously obtained for the U(I) x U(I) nonsu- 
persymmetric model. 

In equation (4.11 b) K-I is the inverse of the propagator of the auxiliary 
fermionic field ~.  The corresponding propagator K(p)  in the momentum 
space can be evaluated: 

1/(4o-) + (e/8"rrm)Z'y "q ( - 1 / 2  e/8"rrm 
K(q) = (1/(4o-))2 - ~ ~e/Sfrm - ( l /2o- )~ t 'q /q2 j  (4.15) 

Finally, in equations (4.1 lc) and (4.11d) p - l  and G -1 are the inverses 
of the propagators associated to the anyonic matter fields. In the momentum 
space, these propagators are given respectively by 

i(~l 'p - m)  
G(p)  - p2 + m 2 (4.16) 

1 
P(1) - 12 _ m2 (4.17) 

When the electromagnetic interaction is withdrawn, the pure anyonic 
model (HIousek and Spector, 1990) is obtained. Of course, in such a case 
the path-integral method we have developed reduces to the usual one, giving 
rise to the well-known propagators. 

Equation (4.1 le) is the part of the action which accounts for the vertices 
of the model. There is a four-leg derivative vertex which is described by 
defining the 6 x 6 matrix V xA, 

vX, A = 

1 0 0 1 0 0 ~ 
0 1 0 0 1 0 
0 0 1 0 0 1 
1 0 0 1 0 0 
0 1 0 0 1 0 
0 0 1 0 0 1 

(4.18) 

The other vertices have three legs, one of which is derivative. Moreover, 
in equation (4.1 le), we have formally written I = (1, 1), F x = (3 ,~, 3,v), and 
a x = (a., or). 

We can now write the Feynman rule propagators and vertices. 
(i) Propagators. We associate with the propagator DXA of the bosonic 

field X,- a wavy line connecting two generic points, 

Xx ~ XA = DzA(k) 
k ~  



Supersymmetric Anyon Model Coupled t o  E M  F i e l d  1 6 9 5  

We associate with the propagator K ( q )  of the fermionic field -=, the 
supeI~artner of Xv, a double line, 

=- K ( q )  
q---~ 

We associate with the usual propagators of the fermionic and the bosonic 
matter fields a continuous and a dashed line, respectively: 

and 

p - - >  
--- G ( p )  

. . . . . . . . . . . . . .  = P ( I )  
l---> 

(ii) V e r t i c e s .  The four-leg vertex of the model is 
Xr: X  ̂

> ~  .> e 2 . . . . . . . . . . . . . . . . . . . . .  r . . . . . . . . . . . .  ~ V ZA 

and the three-leg vertices are 

~ , =- i e l ,  

_ e F  ~-, 

n ~ 

e e • 

1 

- -  i e l  

=-- 2 i e f -  
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Moreover, as usual, we have to take into account a minus sign for every 
closed fermion loop and another minus sign for diagrams related to the 
exchange of two fermion lines, internal or external. A combinatorial factor 
correcting for double counting in the case that identical particles occur also 
must be taken into account. 

At this stage, we could analyze this supersymmetric gauge model 
describing the interaction of the pair of supersymmetric fields (X~, ~)  with 
the pair of supersymmetric matter fields (¢, ~p) in the framework of the 
perturbative theory. 

We do not treat here the problem of regularization and renormalization 
of this model. However, by looking at the expressions of the propagators 
and taking into account the above Feynman rules, complete information about 
the perturbative behavior could be obtained. At least the one-loop structure 
can be easily studied by analyzing the superficial degree of divergence of 
the corresponding diagrams. It can be seen that this gauge model belongs to 
the class of theories with only a finite number of divergent diagrams. So the 
regularization and renormalization problem is reduced to the problem of 
regularizing a superrenormalizable theory and it can be done by the usual 
methods (Alvarez Gaum6 et  al., 1990). 

Finally, we note that when higher derivative terms are added to the 
action, the ultraviolet behavior of some propagators can be improved. This 
fact was already studied in nonsupersymmetric gauge models (Alvarez Gaum6 
et  al., 1990; Foussats et  al., 1995a). 

Also in the present supersymmetric case it is shown that by adding in 
the action (2.10) the term 

I d3x d20 (V'~W.'~(A, (4.19) k))(V,~W~(B, X)) 

which preserves the gauge invariance of the model, the behavior of the 
propagators (4.12) and (4.17) at large momentum can be improved. The new 
bosonic propagator associated with the field X~ gains two powers of k with 
respect to the form (4.12). Similarly, the new fermionic propagator associated 
with the field ~, gains two powers of q with respect to the form (4.17). So, 
the useful result of this trick is to render the model less divergent. 

5. CONCLUSIONS 

Starting from the U(I) × U(1) gauge model for anyons interacting with 
the electromagnetic field, we have shown how it is possible to construct the 
supersymmetric version of the model. 

The supersymmetric anyon model was treated as a constrained Hamilto- 
nian system and the canonical quantization was found. The first-class con- 
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straints associated with the U(1) × U(1) symmetries were found. A set of 
compatible gauge-fixing conditions allowed us to determine the gauge-fixed 
part of the effective quantum action. 

Next, by going over to path-integral quantization method, we could 
write the partition function and so construct the Feynman rules and the 
diagrammatics by defining suitable mixed propagators and vertices. Due to 
the form of the bilinear interacting terms, this supersymmetric gauge model 
admits a unique bosonic propagator associated with the two U(I) gauge 
fields. Similarly, a unique mixed fermionic propagator associated with the 
two fermionic superpartners must be defined. Therefore, this supersymmetric 
anyon model can be treated in the framework of the perturbation formalism. 

By means of the propagators thus defined, all the diagrams are obtained 
by connecting vertices and sources as usual. 

The coupled system has different vertices; one of these has four legs 
and the remaining ones have three legs. The vertex structure is a direct 
consequence of the coupling properties of the supersymmetric Lagrangian. 

Furthermore, looking at the diagrammatics, it is possible to conclude 
that the model belongs to the class of superrenormalizable theories because 
it has a finite number of divergent diagrams. As briefly remarked but not 
shown, by using the perturbative formalism developed, all the information 
and prescriptions about the regularization and renormalization of the model 
can be given. 
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